Robotic arm carrying a mechanical part
Image Credits:Alashi / Getty Images (Image has been modified)

Facebook speeds up AI training by culling the weak

Training an artificial intelligence agent to do something like navigate a complex 3D world is computationally expensive and time-consuming. In order to better create these potentially useful systems, Facebook engineers derived huge efficiency benefits from, essentially, leaving the slowest of the pack behind.

It’s part of the company’s new focus on “embodied AI,” meaning machine learning systems that interact intelligently with their surroundings. That could mean lots of things — responding to a voice command using conversational context, for instance, but also more subtle things like a robot knowing it has entered the wrong room of a house. Exactly why Facebook is so interested in that I’ll leave to your own speculation, but the fact is they’ve recruited and funded serious researchers to look into this and related domains of AI work.

To create such “embodied” systems, you need to train them using a reasonable facsimile of the real world. One can’t expect an AI that’s never seen an actual hallway to know what walls and doors are. And given how slow real robots actually move in real life you can’t expect them to learn their lessons here. That’s what led Facebook to create Habitat, a set of simulated real-world environments meant to be photorealistic enough that what an AI learns by navigating them could also be applied to the real world.

Facebook is creating photorealistic homes for AIs to work and learn in

Such simulators, which are common in robotics and AI training, are also useful because, being simulators, you can run many instances of them at the same time — for simple ones, thousands simultaneously, each one with an agent in it attempting to solve a problem and eventually reporting back its findings to the central system that dispatched it.

Unfortunately, photorealistic 3D environments use a lot of computation compared to simpler virtual ones, meaning that researchers are limited to a handful of simultaneous instances, slowing learning to a comparative crawl.

Techcrunch event

Join 10k+ tech and VC leaders for growth and connections at Disrupt 2025

Netflix, Box, a16z, ElevenLabs, Wayve, Hugging Face, Elad Gil, Vinod Khosla — just some of the 250+ heavy hitters leading 200+ sessions designed to deliver the insights that fuel startup growth and sharpen your edge. Don’t miss the 20th anniversary of TechCrunch, and a chance to learn from the top voices in tech. Grab your ticket before doors open to save up to $444.

Join 10k+ tech and VC leaders for growth and connections at Disrupt 2025

Netflix, Box, a16z, ElevenLabs, Wayve, Hugging Face, Elad Gil, Vinod Khosla — just some of the 250+ heavy hitters leading 200+ sessions designed to deliver the insights that fuel startup growth and sharpen your edge. Don’t miss a chance to learn from the top voices in tech. Grab your ticket before doors open to save up to $444.

San Francisco | October 27-29, 2025

The Facebook researchers, led by Dhruv Batra and Erik Wijmans, the former a professor and the latter a PhD student at Georgia Tech, found a way to speed up this process by an order of magnitude or more. And the result is an AI system that can navigate a 3D environment from a starting point to goal with a 99.9% success rate and few mistakes.

Topics

,
Loading the next article
Error loading the next article